Preview

Nauchnyi dialog

Advanced search

Gender Factor in Associative Links of Words: Dictionary and Distributive-Semantic Model Data

https://doi.org/10.24224/2227-1295-2022-11-5-136-156

Abstract

The aim of the work is to make a comparative analysis of the associative links of full-meaning words from the upper zone of the frequency list, compiled on the basis of a research corpus of blog texts in Russian, in a psycholinguistic experiment and the distributivesemantic model Global Vectors (GloVe), trained on this corpus. The relevance of the work is due to the need for a comprehensive study of the psychologically relevant meaning of the word. The novelty of the study lies in the fact that such an analysis is carried out taking into account the gender factor of the respondent / author of the text. The use of a set of methods for data mining (clustering, classification) and visualization of its results made it possible to establish the influence of gender on the composition of the semantic associates of the analyzed words (that is, words with close vectors in the distributive-semantic model) and the absence of such an effect in their associates recorded in the associative dictionary. As the study showed, distributivesemantic models and dictionary associative norms reflect different aspects of the psychologically relevant content of the word and should be used as complementary sources when modeling the psychologically relevant meaning of the word, taking into account the individual characteristics of the speaker, while conducting such an analysis it is advisable to use data mining methods.

About the Authors

T. A. Litvinova
Voronezh State Pedagogical University
Russian Federation

Tatyana A. Litvinova, PhD in Philology, Researcher, Regional Russian Language Center; Leading Researcher, Research Laboratory of Computer Semasiology

Voronezh



E. S. Kotlyarova
Voronezh State Pedagogical University
Russian Federation

Elena S. Kotlyarova, Laboratory Assistant, Research Laboratory of Computer Semasiology

Voronezh



V. A. Zavarzina
Voronezh State Pedagogical University
Russian Federation

Victoria A. Zavarzina, Post-graduate Student, Assistant, Research Laboratory of Computer Semasiology

Voronezh



References

1. Age differential psycholinguistic dictionary of the Russian language. (2020). Voronezh: VSU Center for Communication Studies. 158 p. ISBN 978-5-6045255-5-5.

2. Antipenko, A. A., Mitrofanova, O. A. (2020). Comparative analysis of associations in social network corpora based on distributive semantic models for the Russian language. International Journal of open information technologies, 1: 27—33. (In Russ.).

3. Associative experiment: Theoretical and applied perspectives of psycholinguistics: monograph. (2019). Moscow: R-Valent. 200 p. ISBN 978-5-93439-575-0. (In Russ.).

4. Boleda G. (2020). Distributional Semantics and Linguistic Theory. Annual Review of Linguistics, 6 (1): 213—234. DOI: 10.1146/annurev-linguistics-011619-030303.

5. De Deyne, S. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behav Res Methods, 51 (3): 987—1006. DOI: https://doi.org/10.3758/s13428-018-1115-7/.

6. Gender differential psycholinguistic dictionary. (2020). Voronezh: Rhythm. 198 p. ISBN 978-5-6045255-7-9. (In Russ.).

7. Goldin, V. E., Sdobnova, A. P. (2017). Project “Associative dictionary of schoolchildren: stability and dynamics”. Questions of psycholinguistics, 4 (34): 174—187. (In Russ.).

8. Goroshko, E. I. (2001). Integrative model of a free associative experiment. Kharkiv; Moscow: RA — Karavella. 320 p. (In Russ.).

9. Quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software, 3 (30): P. 774. DOI: 10.21105/joss.00774.

10. Kaftanov, R. A. (2019). Dynamics of the image of war in the Russian linguistic consciousness (psycholinguistic aspect). Bulletin of the NSU. Series: Linguistics and Intercultural Communication, 17 (1): 149—160. DOI: https://doi.org/10.25205/1818-7935-2019-17-1-149-160. (In Russ.).

11. Kumar, A. A. (2021). Semantic memory: A review of methods, models, and current challenges. Psychon Bull Rev, 28 (1): 40—80. DOI: https://doi.org/10.3758/s13423-020-01792-x.

12. Kumar, A. A., Steyvers, M., Balota, D. A. (2021). A Critical Review of Network-Based and Distributional Approaches to Semantic Memory Structure and Processes. Topics in cognitive science. Jun 6. DOI: 10.1111/tops.12548.

13. Leontiev, A. A. (1997). Fundamentals of psycholinguistics. Moscow: Smysl. 287 p. ISBN 5-89357-191-6. (In Russ.).

14. Lê, S., Josse, J., Husson, F. (2008). FactoMineR: A Package for Multivariate Analysis. Journal of Statistical Software, 25 (1): 1—18. DOI: 10.18637/jss.

15. Litvinova, T., Sboev, A., Panicheva, P. (2018). Profiling the Age of Russian Bloggers. Communications in Computer and Information Science, 930: 167—177. DOI: 10.1007/978-3-030-01204-5_16.

16. Litvinova, T. (2021). RusIdiolect: A New Resource for Authorship Studies. Lecture Notes in Networks and Systems, 186: 14—23. DOI: https://doi.org/10.1007/978-3-030-66093-2_2.

17. Lychenko, N. M., Sorokovaya, A. V. (2019). Comparison of the effectiveness of methods of vector representation of words for determining the tonality of texts. MSiM, 4 (52): 97—110. DOI: 10.24147/2222-8772.2019.4.97-110. (In Russ.).

18. Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. In: Proceedings of Workshop at ICLR, arXiv. 1301—3781.

19. Nematzadeh, A., Meylan, S., Griffiths, T. (2017). Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words. In: Proceedings of the 39th Annual Meeting of the Cog- nitive Science Society. London, UK: [b. i]. 859—854.

20. Pennington, J., Socher, R., Manning, C. (2014). GloVe: Global Vectors for Word Representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 14: 1532—1543.

21. Pishchalnikova, V. A. (2019a). Interpretation of associative data as a problem of psycholinguistics methodology. Russian Journal of Linguistics, 23 (3): 749—761. DOI: 10.22363/2312-9182-2019-23-3-749-761. (In Russ.).

22. Pishchalnikova, V. A. (2019b). Experiment as an integral part of the methodology of comparative studies. Bulletin of Volgograd State University. Series 2, Linguistics, 8 (3): 52—63. DOI: https://doi.org/10.15688/jvolsu2.2019.3.4. (In Russ.).

23. Potapenko, A. A. (2018). Semantic vector representations of text based on probabilistic thematic modeling. PhD Diss. Moscow. 147 p. (In Russ.).

24. Rodriguez, M. A., Merlo, P. (2020). Word associations and the distance properties of context-aware word embeddings. CONLL. November 19—20. 376—385. DOI: 10.18653/v1/2020.conll-1.30.

25. Rodriguez, P. L., Spirling, A. (2022). Word Embeddings: What Works, What Doesn’t, and How to Tell the Difference for Applied Research. The Journal of Politics, 84 (1): 101—115. DOI: https://doi.org/10.1086/715162.

26. Sahlgren, M. (2008). The Distributional Hypothesis. From context to meaning. Distributional models of the lexicon in linguistics and cognitive science (Special issue of the Italian Journal of Linguistics), Rivista di Linguistica, 20 (1): 33—53.

27. Sassenhagen, J., Fiebach. C. (2020). Traces of Meaning Itself: Encoding Distributional Word Vectors in Brain Activity. Neurobiology of Language, 1 (1): 54—76. DOI: https://doi.org/10.1162/nol_a_00003.

28. Schmid, H. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceedings of International Conference on New Methods in Language Processing. Manchester: UK.

29. Sternin, I. A. (ed.). (2015). Meaning as a phenomenon of actual linguistic consciousness of a native speaker: materials of an interregional scientific conference. Voronezh: Istoki. 69 p. (In Russ.).

30. Taylor, J. R. (2012). The mental corpus: How language is represented in the mind. Oxford: University Press. 384 p.

31. Timofeeva, M. K. (2018). Possibility of Extracting Semantic Associates of Russian Verbs by the Instrument RusVectōrēs. Nauchnyy dialog, 9: 117—131. DOI: 10.24224/2227-1295-2018-9-117-131. (In Russ.)

32. Timofeeva, M. K. (2018). Typology of Semantic Relations Extracted by the Instrument RusVectōrēs. Nauchnyi dialog, 8: 74—87. https://doi.org/10.24224/2227-1295-2018-8-74-87. (In Russ.).

33. Vasilyeva, S. P. (2020). Experience of Identifying the Specifics of Everyday Linguistic Consciousness of Russians according to Associative Dictionaries of the XX—XXI Centuries. Nauchnyi dialog, 1: 27—44. https://doi.org/10.24224/2227-1295-2020-1-27-44. (In Russ.).


Review

For citations:


Litvinova T.A., Kotlyarova E.S., Zavarzina V.A. Gender Factor in Associative Links of Words: Dictionary and Distributive-Semantic Model Data. Nauchnyi dialog. 2022;11(5):136-156. (In Russ.) https://doi.org/10.24224/2227-1295-2022-11-5-136-156

Views: 436


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-756X (Print)
ISSN 2227-1295 (Online)